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The role of flavor and fragrance chemicals in
TRPA1 (transient receptor potential cation channel,
member A1) activity associated with allergies
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Abstract

TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception,
hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1
by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification
and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the
activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring
TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1
agonists, including thymol, carvacrol, 1’S-1’- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and
thymoquinone as well as isothiocyanates and sulfides are discussed.
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Background
Allergies have been known as hypersensitivity disorders
of the immune system since the beginning of the 19th
century, and the concept of hay fever was described
around same period. Later, it was proposed that allergic
symptoms, such as asthma, were triggered by certain
chemicals, in particular, naturally occurring ones [1]. For
example, leukotrienes derived from arachidonic acid
were hypothesized to play an important role in asthma
[2]. Through studies conducted over the past decade,
the association between immunogenic and neurogenic
mechanisms in airway inflammation has been recognized
[3,4]. It is also known that neuronal activation causes
pain and irritation; neurogenic inflammation; mucus
secretion; and reflex responses such as coughing, sneezing
and bronchoconstriction.
Some of the agonists of transient receptor potential

cation channel subfamily V member 1 (TRPV1) and transi-
ent receptor potential cation channel, member A1 (TRPA1)
are reportedly potent tussive agents [3].
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Figure 1 shows the structure of one TRPA1 subunit.
TRPA1, which is a Ca2+ permeable non-selective cat-
ion channel, functions to depolarize the plasma
membrane and influx Ca2+ [5]. The TRPA1 channel is a
target of the mediators that promote inflammatory pain
in the nervous system [6,7]. TRPA1 receptor agonists
are chemicals that bind to TRPA1 receptors and activate
the receptors to produce biological responses. Whereas
TRPA1 receptor agonists cause actions, antagonists
block the actions of the agonists. There are ankyrin
repeat motifs in the intracellular N-terminal moiety
of TRPA1. These moieties possess cysteine and ly-
sine residues, which are essential for activation by
reactive agonists. Also, a partial EF-hand domain,
which is one of the motifs of a second structure of
a protein, is associated with calcium-dependent gat-
ing [8,9].
A functional channel consists of 4 identical TRPA1

subunits. A subunit has six transmembrane domains,
TM1 - TM6 along with a long cytoplasmic N-terminal
domain. Ovals indicate ankyrin repeat domains. Cysteine
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Figure 1 Structure and function of one TRPA1 subunit.
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residues of TRPA1 are marked with ⨀ for mouse, ○ for
human and ● for mouse and human. They were essential
for their covalent activation [10,11].
TRPA1 is activated by various noxious stimuli, includ-

ing cold temperatures, pungent natural-compounds, and
environmental irritants [10,12]. Many TRPA1 agonists,
which are thiol reactive compounds, activate TRPA1 via
covalent modification of cysteine moieties within the
cytoplasmic N terminus of the channel [11]. Figure 2
shows the proposed reaction pathway of the activation
of TRPA1 by a typical agonist, allyl isothiocyanate
(AITC). The figure is a modification of a previous report
[11]. The EC50—half maximal (50%) effective concentra-
tion—values for the activation of TRPA1 by AITC vary
among reports from as little as 0.6 μM [13], to 1.47 μM
[14] and 3–34 μM [8]. TRP family members share this
capacity as a polymodal signal detector, and these func-
tion to combine information from many physiological
sources [11,15-17].
Figure 3 shows a model depicting the functional inter-

actions of bradykinin receptors (BK), protease-activated
receptor 2 (PAR2), and TRPA1 and TRPV1. The figure
Figure 2 Proposed reaction pathway of the activation of TRPA1 by a
is constructed on the basis of previous reports [7,8,18].
The hydrolysis of phosphatidylinositol 4,5-bis-phosphate
(PIP2) and the intracellular Ca2+ release are phospholipase
C (PLC)-dependent mechanisms, which activate TRPA1
downstream of inflammatory receptors [8]. Proinflamma-
tory agents trypsin and tryptase are known to cleave to
and to activate PAR2, which causes neurogenic inflamma-
tion by expressing on sensory nerves [19].
Genetic ablation of TRPA1 causes various biological

phenomena, including inhibition of allergen-induced
leukocyte infiltration in the airways, reduction of cytokine
and mucus production, and significant disappearance of
airway hyperreactivity to contractile stimuli. In addition,
mouse model studies indicate that a TRPA1 antagonist
inhibits chemical effects, such as thermal inflammation
and mechanical hyperalgesia, neuropathic pain, and
reduction of acute airway responses to chemical expo-
sures [3]. This evidence indicates that TRPA1 is a
crucial integrator of interactions between the immune
and nervous systems that induces asthmatic inflammation
in the airways following an inhaled allergen challenge
[3,20]. Pharmacological desensitization of receptors is a
basic mechanism of regulation of this kind of assault on
neuronal systems [21]. TRPA1 is desensitized by its
homologous agonists, such as allyl isothiocyanate (TRPA1
agonist) through the Ca2+-independent pathway and heter-
ologous agonists, such as capsaicin (TRPV1 agonist), via
the Ca2+-dependent pathway in the sensory neurons [5,21].
In this review, the roles of naturally occurring flavor

and fragrance chemicals in TRPA1 activity associated
with allergic disorders, such as asthma, eczema (atopic
dermatitis) and allergic rhinitis are discussed along with the
rationale for the use of TRPA1 as an anti-allergic target.

TRPA1 Antagonists
Figure 4 shows a schematic diagram of nasal allergy-like
symptoms induced by toluene diisocyanate (TDI) in rats.
The figure is based on previously reported diagrams [7,22].
The early phase of type I allergic reaction occurs when
inflammatory mediators are released by environmental
typical agonist, allyl isothiocyanates (AITC).



Figure 3Model depicting functional interactions in Bradykinin Receptors (BK), protease-activated receptors 2 (PAR2), and TRPA1 and TRPV1.

Figure 4 Schematic diagram of nasal allergy-like symptoms induced by toluene diisocyanate (TDI) in rats.
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proteins (antigens) binding to IgE antibodies on the
mast cells. The inflammatory reactions caused by envir-
onmental exposures are closely associated with allergy
and chemical sensitivity, which are similar in the condi-
tion of clinical manifestations. When low molecular
weight chemicals bind to chemoreceptors on sensory
nerve C-fibers, inflammatory mediators are formed in the
case of chemical sensitivity [7]. Although either TRPV1 or
TRPA1 activation causes neurogenic airway inflammation,
an additional inflammatory response which is not neu-
rogenic is solely orchestrated by TRPA1 activation, sug-
gesting that non-neuronal TRPA1 in the airways likely
contributes to inflammatory airway diseases. Figure 5
shows the structures of TRPA1 antagonists discussed in
this review.

Camphor (1,7,7-trimethylbicyclo [2.2.1]heptan-2-one)
Camphor is a bicyclic monoterpene with a 204°C boiling
point. It has a warm-minty fragrance [23]. It is present
in natural plants, such as camphor laurel trees grown in
Asia and has been used for artificial mint flavors and for
some medicinal purposes, including as a nasal decon-
gestant and cough suppressant as well as a skin treatment
because of its antipruritic, analgesic and counterirritant
properties [24-26]. One study found that when camphor
was applied to nasal airways of guinea pigs, a cough in-
duced by citric acid was suppressed [27]. There have been
various reports on the biological activities of camphor
toward TRPs. For example, camphor activated TRPV3 and
heterologously expressed TRPV1, although its activity was
somewhat less than that of capsaicin, the analgesic activity
of which is also associated with TRPV1 desensitization.
On the other hand, it was observed that camphor desensi-
tized TRPV1 more quickly and perfectly than capsaicin
[24,28]. The exposure to vapor phase camphor attenuated
Figure 5 Structures of TRPA1 antagonists discussed in this review.
nasal symptoms (sneezing and nasal rubbing) induced
by toluene diisocyanate (TDI) through the suppression
of the production of neuropeptides, such as substance
P (SP), calcitonin gene related peptide (CGRP) and
nerve growth factor (NGF) in rats. These phenomena
suggest the anti-allergic activities induced by camphor
are due to the desensitization of TRPV1 and the block-
age of TRPA1 [24,29].

1,8-Cineole (1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane)
1,8-Cineole is a bicyclic mono-terpenoid colorless liquid.
It has a fresh, diffusive camphoraceous-cool odor and is
widely used for its refreshing effect in compounding
perfumes with herbaceous type fragrances [23]. High
levels of 1,8-cineole are present in various essential oils,
including eucalyptus [30], laurel leaf [31], ravensara
[32,33], cardamom [34], Alpinia calcarata Rosc [35,36]
and Nepeta pogonosperma Jamzad et Assadi [37]. There
are many reports on the biological activities of 1,8-cine-
ole-rich essential oils, such as their antimicrobial [38,39],
antioxidant [40], acaricidal [41], anticancer [42], larvicidal
[43] and antinociceptive [44] effects. Consequently, many
biological activities of 1,8-cineole itself have been reported,
including its antimicrobial [45], antioxidant [46], anti-
inflammatory [47], antiviral [48], anti-cancer [49] and anti-
bacterial [50] properties. In addition, one recent study
demonstrated that 1,8-cineole was a rare natural antagon-
ist of human TRPA1 (hTRPA1) [51]. Further, 1,8-cineole
has been shown to inhibit homologous passive cutaneous
anaphylaxis (PCA) mediated by IgE antibody in guinea
pigs and to have suppressed antigen-induced histamine
release from rat peritoneal mast cells [52].
Exposure to vapor phase 1,8-cineole has been ob-

served to suppress nasal symptoms (sneezing and nasal
rubbing) induced by TDI by suppressing the production
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of neuropeptides in rats, just as camphor did, suggesting
that it too has anti-allergic, analgesic and anti-inflammatory
effects due to the inhibition of TRPA1 [29,51]. It is interest-
ing that hTRPA1 is inhibited by 1,8-cineole but activated by
its isomer, 1,4-cineole [53].
Menthol [(1R,2S,5R)-2-isopropyl-5-methylcyclohexanol]
Menthol is a monocyclic monoterpene alcohol with a
boiling point of 212°C. It is a clear or white solid at
room temperature. Menthol has a refreshing and diffu-
sive odor with a sweet pungency as well a characteristic
peppermint odor. It has been widely used in food and
cosmetic products as a flavor and fragrance ingredient.
Some products utilizing menthol include imitation pepper-
mint flavors for ice creams, cookies, chewing gums, lotions
and shaving creams [23]. There are eight possible stereoiso-
mers; the (−)-menthol assigned 1R,2S,5R configuration is
the one generally present in natural plants. It is present in
mint (Mentha arvensis) [52].
A recently published comprehensive review article

summarizes menthol’s biological activities, including its
cooling effect and its analgesic, antifungal, antibacterial,
antipruritic, anticarcinogenic, anti-inflammatory, antitus-
sive, antiviral and fumigant/insecticidal effects as well as
a possible role in slowing the progression of Alzheimer’s
disease [54]. Biological activities of menthol associated
with allergy were demonstrated as menthol-rich pepper-
mint oil and menthol itself were seen to suppress passive
cutaneous anaphylaxis reaction (PCA) mediated by IgE
antibody in guinea pigs and menthol reduced antigen-
induced histamine release from rat peritoneal mast cells
[52]. Moreover, menthol exhibits biological effects on
TRPA1, such as a bimodal action on mouse TRPA1
(mTRPA1). Menthol induced robust channel activation
at submicromolar to low micromolar concentrations but
reversible channel blocking at higher concentrations
in mice [55,56]. Menthol also activates human TRPA1
(hTRPA1), but the same bimodal action has not been
reported, and it has no effects on TRPA1 from non-
mammalians [55]. Serine and threonine residues—pre-
dicted to be located in the inner side of a transmembrane
domain 5 (TM5)—were found to play an important role in
the sensitivity of mice as well as humans, toward menthol
in both mammalian TRPA1 channels (refer to Figure 1).
Of the three agonists discussed above, menthol exhibited
the most effective results on cough suppression in guinea
pigs treated with aerosolized citric acid. Camphor exhib-
ited moderate activity, whereas 1,8-cineole exhibited none
[57]. When TRPM8 agonists, (−)- and (+)-menthols were
applied to the nose, allergic reactions (cough threshold,
urge to cough and cumulative cough) improved consider-
ably, suggesting that menthol isomers possess a strong
anti-irritant effect [58].
Borneol (endo-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-ol)
Borneol comes in the form of colorless or white lumps
at room temperature that melt at 208°C. It exists as
two enantiomers and its naturally occurring form is
d-(+)-borneol. Borneol has a woody, somewhat minty
odor and is used as a fragrance ingredient for perfumes
and household products, such as room-fresheners [23].
It has been found in various plants, including the Mei
Pian tree [59], yomogi [60] and ginger [61]. Some
biological activities, such as anti-inflammatory and
analgesic, of borneol have been reported [62]. Recently,
borneol, camphor, 1,8-cineole and α-/β-thujone were
demonstrated to exhibit anti-inflammatory activity against
sage infusion in human gingival fibroblasts [63].

Fenchyl alcohol [(1R,2R,4S)-1,3,3-trimethyl-2-norbornanol]
Fenchyl alcohol is an isomer of borneol. It is a colorless
solid crystalline that melts at 48°C. It possesses a powerful
and diffusive camphor-like fragrance and is used exten-
sively in perfumes. It is also used in flavor compositions,
such as strawberry and other berries [23]. Fenchyl alcohol
is present as the second largest component (8.9%) after
aciphyllene (66.4%) in the essential oil Stachys tibetica,
which has been used as a folk medicine in Ladakh, India
and Tibet for the treatment of psychiatric disorders [64].
In contrast, fenchyl alcohol is also reported as an off-
flavor compound formed microbially in apple juice [65].

2-Methylisoborneol (1,2,7,7-tetramethylbicyclo[2.2.1]
heptan-2-ol)
2-Methylisoborneol is a derivate of borneol with a boiling
point of 208.7°C. It is present in blue-green algae found in
saline lakes in South Western Manitoba, Canada [66].
2-Methylisoborneol has a unique strong musty or earthy
odor and is associated with negative assessments of drink-
ing water when present [67]. It is also reported in the
essential oil of turmeric leaves (Curcuma longa L. Kasur)
grown in Pakistan [68] and in the tea tree (Melaleuca
alternifolia, Myrtaceae) grown in Australia [69]. An
essential oil of the tea tree has been used in artificial
fragrances for cosmetic products and also for treatment
of infections, suggesting that its components exhibit
biological activity [69].
Among the antagonists discussed in this section,

borneol, 2-methylisoborneol and fenchyl alcohol had
stronger inhibitory effects on hTRPA1 than camphor
and 1,8-cineole. It is proposed that the S873, T874 and
Y812 residues of hTRPA1 contributed to the inhibitory
effects by interacting with a hydroxyl group on a hexyl
ring [53].

TRPA1 Agonists
Figure 6 shows structures of the aromatic TRPA1 agonists
discussed in the present review. Figure 7 shows structures



Figure 6 Structures of aromatic TRPA1 agonists discussed in the present review.
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of the nitrogen (isocyanate) or sulfur (sulfides) and nitro-
gen/sulfur (isothiocyanates) containing TRPA1 agonists
discussed in the present review.

Thymol (2-isopropyl-5-methylphenol)
Thymol is a naturally occurring monoterpene aromatic
alcohol and translucent crystal with a boiling point of
232°C [23]. It is the major component of thyme essential
oil [70]. Thymol has a powerful, sweet-medicinal, herb-
aceous, and warm odor of moderate tenacity and its
taste is pleasantly sweet-medicinal and herbaceous-
spicy. Consequently, thymol has been used widely in
Figure 7 Structures of nitrogen (isocyanate) or sulfur (sulfides) and n
discussed in the present review.
flavor compositions for many products, such as tooth-
paste, cough drops, mouth-washes, gargles, and chewing
gums [23].
Thymol is a well-known naturally occurring chemical

with strong biological activities, including antibacterial
[71], larvicidal [72], anti-inflammatory [73], nematicidal
[74], acaricide [75], antifungal [76] and antioxidant [40]
activities. When TDI-sensitized rats were exposed to
vapor phase thymol, various biological effects, including
sneeze suppression, inhibition of an increase of calcitonin
gene-related peptide, and appearance of nerve growth fac-
tor in nasal lavage, were observed [77]. Nasal application
itrogen/sulfur (isothiocyanates) containing TRPA1 agonists
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of thymol suppressed the nasal problems, such as cough,
both in guinea pigs and human volunteers [27,78].
Thymol activated a dose-dependent membrane potential

response and intracellular calcium increase in hTRPA1-
expressing HEK293 cells. Consequently, activation of
hTRPA1 by thymol was observed [70,79]. On the other
hand, once hTRPA1 was activated by thymol, further
exposure to thymol desensitized the activated hTRPA1.
This response by thymol was inhibited by the hTRPA1
antagonist camphor [79]. The anti-allergic property of thy-
mol (TRPA1 agonists) may be due to the down-regulation
(desensitization) of TRPA1 expressed in sensory neurons.

Carvacrol (5-isopropyl-2-methylphenol)
Carvacrol, a colorless liquid with a boiling point of 237°C,
is an isomer of thymol. It is a major component of the
essential oils of oregano, thyme, and marjoram [80].
Carvacrol possesses phenolic herbaceous odor with a spicy
undertone. The odor of carvacrol lacks sweetness com-
pared with that of thymol. It has been used for household
fragrances in products such as soap, air-freshener,
shampoo, and mouthwash [23]. Carvacrol has quite
similar biological activities to those of thymol, including
antioxidant, antimicrobial and anti-inflammatory activ-
ities, and co-exists with thymol in the essential oils of
thyme and oregano [70,76,81]. Carvacrol activates and
then rapidly desensitizes TRPA1 [70]. For example, it
reduced paw edema induced by histamine, dextran, and
substance P, respectively, in mice [82].

1’S-1’-Acetoxychavicol acetate ([4-[(1S)-1-acetyloxyprop-2-
enyl]phenyl] acetate)
1’ S -1’-Acetoxychavicol acetate (ACA) is present in vari-
ous medicinal plants, such as ginger and Alpinia species
grown in Malaysia and Thailand [83]. It possesses a pun-
gent taste [84].
ACA is not widely used for fragrance composition, but

it has been used in various medicinal treatments because
of its biological activities, including anti-inflammatory,
antiallergic, antifungal, antidiabetic, antibacterial, anti-
cancer, and antioxidant [85] activities. In particular, ACA
activities in cancer prevention, such as in the cases of breast
[86], oral [87] and skin [88] cancers, has been reported.
There are many studies on the relationship of ACA to

allergic reactions. Even though ACA did not activate
TRPV1-expressing human embryonic kidney (HEK) cells,
it strongly activated TRPA1- expressing HEK cells. The
EC50 value of ACA for hTRPA1 (0.16 μM) was 3.8-fold
lower than that of a typical TRPA1 agonist, allyl isothio-
cyanate (0.60 μM) [13]. The release of β-hexosaminidase,
which is a marker of antigen-IgE-mediated degranulation
in RBL-2H3 cells, was inhibited by ACA. In addition,
ACA exhibited various biological activities, including in-
hibition of the ear passive cutaneous anaphylaxis reactions
in mice, antigen-IgE-mediated TNF-alpha and IL-4 pro-
duction associated with the late phase of type I allergic re-
actions [89], the reduction of white blood cell infiltration
and IgE level in the lungs of mice administered OVA, the
suppression of histopathological changes, and inhibiting
expression of the various cytokines. Consequently, ACA is
proposed to be an antiasthmatic drug candidate because
asthmatic reactions are mediated by various immune and
inflammatory pathways [90].

Cinnamaldehyde [(E)-3-phenylprop-2-enal]
Cinnamaldehyde comprises over 90% of cinnamon es-
sential oil, which has been used for various medicinal
purposes, including as a styptic, an emmenagogue, a
tonic for the liver, and to reduce inflammation, vomit-
ing, and abdominal pains [91]. Some domestic medi-
cines prepared from cinnamon plants have been used to
treat diseases, including nasal allergies [92] and lung in-
flammation [93]. The herbal medicine, called “Kampo
“or Chinese medicine, “Shoseiryuto” is prepared from
eight plants, including Cinnamomi Cortex (cinnamon);
it has been widely used in Japan [93].
Cinnamaldehyde is a pale yellow viscous liquid with a

boiling point of 248°C. It possesses a warm-spicy-balsamic
odor as well as a sweet and warm-spicy taste [23].
It has been used widely as a fragrance ingredient in

many products, including cosmetics, shampoos, soaps,
and perfumes as well as in household cleaners and deter-
gents [94]. Above all, cinnamaldehyde has been used
widely in flavor compositions, such as cinnamon, cola,
mint, and cherry, because of its unique taste [23]. A
comprehensive review article on the biological activities
of cinnamaldehyde, including its neurotoxicity, mutage-
nicity/anti-mutagenicity, cytotoxicity, and carcinogen-
icity, is available [94]. The activities of cinnamaldehyde
associated with TRPA1 have also been reported. Saturating
activation by cinnamaldehyde blocked the effectiveness
of TRPA1 channels [95]. Cinnamaldehyde reportedly
activated cloned human TRPA1 channels in HEK293
cells as well as vagal sensory nerves in murine, guinea
pig, and human tissues. It also induced reproducible
tussive responses in both guinea pigs and humans [96].
It is proposed that TRPA1 undergoes pharmacological
desensitization through agonist-dependent multiple cel-
lular pathways, which are regulated by TRPV1 [21].
There is clear evidence that oral administration of cin-
namaldehyde decreased oral irritation in humans [97].

α-n-Hexyl cinnamic aldehyde [(2E)-2-benzylideneoctanal]
α-n-Hexyl cinnamic aldehyde (HCA) is a pale yellow
liquid with a boiling point of 308°C. HCA has not been
found in natural plants but can be synthesized by
condensation of benzaldehyde and octanal under basic
conditions. It has a unique sweet-herbaceous/floral odor
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and is heavily used in floral perfume formulations, such
as jasmine, gardenia, tuberose, and magnolia [23]. When
rats were exposed to volatile HCA, their TDI-induced
nasal symptoms (sneezing and nasal rubbing) were
suppressed. These effects were associated with the sup-
pression of the production of neuropeptides like SP,
CGRP and NGF [98]. Figure 8 shows a proposed reac-
tion mechanism of HCA/TRPA1 adduct formation. This
reaction occurs through activation of TRPA1 by α,β −
unsaturated aldehydes, such as HCA, subsequent to
which adducts are formed upon Michael addition reac-
tion [8]. HCA also has been demonstrated to activate
TRPA1 via covalent protein modification.

Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone)
Thymoquinone is a monoterpene diketone with a
boiling point of 230–232°C. It is the major monoter-
pene present in the essential oil of Nigella sativa L
seeds, which has been used as a folk medicine for
various diseases, such as eczema, asthma, bronchitis,
and inflammation [73,99,100]. This thymoquinone
containing plant demonstrates some biological activ-
ities, including anti-tumor [101], cytotoxic and immu-
nopotentiating [102], anti-inflammatory [103,104] as
well as respiratory stimulatory effects [105]. Figure 9
shows a proposed formation mechanism for the thymo-
quinone/TRPA1 adduct via the Michael addition. Qui-
nones, including thymoquinone, react with cellular
nucleophiles such as thiols or amines. Thymoquinone
may activate TRPA1 through covalent protein modifica-
tion [106,107]. As shown in Figure 1, the presence of
several cysteine residues is necessary in order to activate
TRPA1 by thymoquinone [11].

Toluene 2,4-diisocyanate (2,4-diisocyanato-1-methylbenzene)
Toluene 2,4-diisocyanate (TDI) has not been reported in
natural plants. However, a brief description of TDI is
given because it has been commonly and widely used in
model studies of allergies. Moreover, TDI appears many
times in this review (see Figure 4). It is a powerful irri-
tant to the mucosal membranes of the respiratory tracts,
eyes, and skin [108] and causes various respiratory
Figure 8 Proposed reaction mechanism of HCA/TRPA1 adduct format
symptoms, such as coughing, rhinitis, and dyspnea as
well as chest tightness, in people who work in factories
associated with this chemical [109]. When TDI was ad-
ministered intranasally to guinea pigs, nasal allergy-like
symptoms (sneezing and watery rhinorrhea) were ob-
served; but when the TRPV1 agonist, capsaicin, was ad-
ministered before the treatment with TDI, those
symptoms were not observed. Capsaicin desensitization
also inhibits the formation of histamine by TDI in the
nasal mucosa. These reports suggest that the antidromic
impulses (Axon reflex) from capsaicin-sensitive nerves
induce histamine in the nasal mucosa upon TDI stimu-
lation and, consequently, nasal discharge and sneezing
occurs in guinea pigs (refer to Figure 4 for the mechan-
ism) [110]. The up-regulation of histamine H (1) recep-
tor (HIR) and histidine decarboxylase (HDC) gene
expressions were also induced by TDI [111].
The activation of TRPA1 triggers release of pro-

inflammatory neuropeptides, such as substance P or
CGRP, by elevating Ca2+ levels in neurons [8]. A subset
of dissociated trigeminal sensory neurons from wild-
type mice was activated by TDI, but the same subset
from TRPA1-deficient mice was not activated by TDI.
TDI caused a reduction in the breathing rate and
respiratory sensory irritation in wild-type mice, but not
in TRPA1-deficient mice. They also exhibited some
sensory effects, such as nerve activation and airway irri-
tation via the activation of the ion channel [109].

Isothiocyanates
The chemicals called isothiocyanate contain the -NCS
moiety. They have a sulfurous odor.
In particular, allyl isothiocyanate (AITC)—a colorless li-

quid with a boiling point of 148–154°C—and 6-(methylthio)
hexyl isothiocyanate (MHITC) give the characteristic green
tone and pungent odor to Wasabi (Wasabia japonica
(Miquel) Matsumura) [112]. Wasabi extract has been used
as a domestic medicine for many purposes, such as anti-
microbial, deodorization and detoxification [113] treatments
as well as to improve the atopic-dermatitis-like symptoms of
HR-1 hairless mice [114]. One study reported that sulfo-
raphane (4-methylsulfinyl butyl isothiocyanate)—found in
ion.



Figure 9 Proposed formation mechanism of thymoquinone/TRPA1 adduct via Michael addition.
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broccoli sprouts with five other isothiocyanates—exhibited
potent anti-helicobacter activity [115].
Exposure to vapor phase MHITC [116], 4-methoxyphenyl

isothiocyanate (MPITC), 2-phenethyl isothiocyanate
(PEITC), benzyl isothiocyanate (BITC) and n-butyl iso-
thiocyanate (nBITC) (refer to Figure 7 for structures)
inhibited nasal symptoms (sneezing and nasal rubbing) in-
duced by TDI via suppression of the production of neuro-
peptides, such as SP, CGRP and NGF, in rats [117].
MHITC reportedly activated both mTRPA1 and hTRPA1,

suggesting that these biological activities of isothiocyanates
are due to TRPA1 activation [112]. TRPA1 is a cation
channel and is co-expressed with the TRPV1 channel in
primary sensory neurons. TRPV1-specific agonist cap-
saicin and a typical TRPA1 agonist, allyl isothiocyanate
(AITC) reportedly exhibited functional cross-desensiti
zation in various rat and human models. Capsaicin- and
AITC-induced calcitonin gene-related peptide (CGRP)
release was 50–60% inhibited by pretreatment, indicat-
ing that homologous and heterologous desensitization
occurred [118]. As shown in Figure 2, isothiocyanates
are membrane-permeable electrophiles that form ad-
ducts with thiols and primary amines, suggesting that
covalent modification, rather than classical lock-and-
key binding, accounts for their agonist properties [11].
The anti-allergic properties of isothiocyanates may be
due to the down-regulation (desensitization) of TRPA1
expressed in sensory neurons [21].
Figure 10 Proposed formation pathway of S-allylmercaptocysteine fro
moiety of β-tubulin.
Diallyl trisulfide [3-(prop-2-enyltrisulfanyl)prop-1-ene]
Sulfide compounds are known to be present in garlic
(Allium sativum L.). They are formed from sulfur-
containing amino acids, such as cysteine and methio-
nine, in garlic and are known to have various medicinal
properties, including antibacterial, antithrombotic, car-
diovascular, and anticarcinogenic activities [119-121].
Diallyl trisulfide, or allitridin, is a yellow liquid with an
experimental boiling point of 251–262°C. It possesses
a strong garlic odor and exhibits anticarcinogenic ac-
tivity [122,123]. The EC50 values of diallyl trisulfide
and allyl isothiocyanate (AITC) for hTRPA1 are 0.49 μM
and 1.47 μM, respectively, suggesting that diallyl trisulfide
is a more potent agonist than AITC, a typical hTRPA1
agonist [14]. Figure 10 shows the formation pathway of
S-allylmercaptocysteine from a reaction between diallyl
trisulfide and a specific cysteine moiety of β-tubulin,
which is in the globular protein family. This reaction
suggests that diallyl trisulfide is responsible, at least in
part, for the anticarcinogenic effect of garlic [122].

Dipropyl trisulfide [1-(propyltrisulfanyl)propane]
Dipropyl trisulfide has a typical sulfurous flavor and a
boiling point of 256.8°C. It is a major component in the
essential oil of leeks, Allium porrum L. (Alliaceae) and
exhibits antimicrobial activity [124]. As in the case of cam-
phor, 1,8-cineole and thymol, exposure to vapor phase
dipropyl trisulfide attenuated nasal symptoms (sneezing
m the reaction between diallyl trisulfide and a specific cysteine
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and nasal rubbing) induced by TDI in rats, indicating that
prolonged exposure to dipropyl trisulfide, which is a prob-
able TRPA1 agonist, desensitized the nociceptive receptor
TRPA1 (Figure 1) [125].
Studies using chemicals with strong irritant activity are

limited to in vitro studies with cells or animal studies.
Quantities of the irritant chemicals and study methods
are strictly limited in human studies. For example, a
Chinese herb medicine, cinnamon containing cinnamal-
dehyde, has been used to treat sinus allergies. Directions
for use and dosage are established based on long term
experience. However, there is almost no information
derived from human clinical studies on the anti-allergic
activities of fragrance chemicals.

Conclusions
There are two groups of naturally occurring flavor and
fragrance chemicals associated with TRPA1: one group
comprises the antagonists, such as camphor, 1,8-cineole,
menthol, borneol and fenchyl alcohol; and the other group
is the agonists, such as thymol, carvacrol, 1’S-1’-acetoxy-
chavicol acetate, cinnamaldehyde, thymoquinone and iso-
thiocyanates. TRPA1 antagonists have anti-inflammatory
and anti-allergic effects, possibly due to their TRPA1
blocking activity expressed in sensory neurons. On the
other hand, activation and subsequent down-regulation of
TRPA1 expressed in sensory neurons (desensitization)
may be associated with the anti-allergic property of the
TRPA1 agonists. Fragrance chemicals associated with
TRPA1 are extremely important because they play a key
role in allergic reactions. Therefore, investigation of how
TRPA1 reacts in tandem with other chemicals is one way
to elucidate various allergic mechanisms and to further
efforts to improve drug treatments to prevent allergic
reactions.
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